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As an extension of the results obtained in [1], two equivalent uniformly divergent systems of equations are constructed in the 
speedograph plane, each of which is the analogue of Chaplygin's equation in the hodograph plane. Each of the systems reduces 
to a linear second-order equation, in one case for the particle function (the Lagrange coordinate) ~, and in the other for the 
time t. These systems possess an infinite set of exact solutions. It is shown that a uniformly divergent system of first-order equations 
correspond to each of these, and, related to them, the simplest non-linear homogeneous second-order equation in the modified 
events plane (% t) and the conservation law in the events plane (x, t). Clear relations are obtained between the velocities of the 
fronts of constant values of the newly constructed dependent variables and the velocity of sound. Examples are given which 
demonstrate the relation between the exact solutions with the uniformly divergent equations and the conservation laws of one- 
dimensional non-stationary gas dynamics and, simultaneously, enable one to compare the newly obtained results (the exact 
solutions, the equations and conservation laws, and the relations for the velocities of the front) with existing results, including 
those for plane steady flows. The so-called additional conservation laws, to which Godunov drew attention, are considered. 
© 2005 Elsevier Ltd. All rights reserved. 

1. T H E  N O N - S T A T I O N A R Y  A N A L O G U E  O F  
C t t A P L Y G I N ' S  E Q U A T I O N S  

Consider  the one-dimensional  non-stat ionary barot ropic  flows of  an ideal (non-viscous and non-heat  
conducting) gas with plane waves. We will take as the initial system of  equations the system of equations 
in the plane of  events (x, t) [2-4] 

pu,, + upx  + Pt = O, p u u  x + a2px + p u  t : 0 (1.1) 

Here  t is the time, x is the geometr ical  coordinate,  u is the velocity, p is the density, p is the pressure 

and a is the velocity of  sound (a2  = d~- ) . 

Af ter  changing to the speedograph plane (u, v), the system (1.1) can be rewrit ten as [2] 

a t  v - u t  u+ x u = O, u t  o - a t  u - x  u = 0 (1.2) 

The  function v, in t roduced previously by Reimann,  is defined by the following equivalent equat ions 
[2, 5]. 

e a d  , d v  _ a 

ap o 

In view of  the fact that the flow is barotropic, any three of  the four functions P,P, a and ~) can be expressed 
in terms of  the remaining four th  function. In  system (1.2) we used v as this function. For  our  fur ther  
investigation in turns out  to be more  suitable to use the func t ionsp  or  w = p -I [3, 5]. 

tPrikL Mat. Mekh. Vol. 69, No. 2, pp. 245-257, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.j appmathmech.2005.03.008 
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For greater clarity, we will confine ourselves to the case of a polytropic gas with adiabatic exponent 
k; we have 

k a z dp = kp  = kpk-1 ,  1) = 2a 
p = 0 ,  = d7 p k - i  

At the fourth step for converting the homogeneous linear system (1.2) into a uniformly divergent 
system, we will consider, instead of the x coordinate, the particle function (the Lagrange coordinate) 
% defined in the standard way [2-5] 

0---~ = p, -~- = -pu, dill = p d x - p u d t  

As a result, we can rewrite system (1.2) as 

p a t  u + ~ .  = O, patu + ~ u  = 0 

We can achieve a further simplification by replacing the function v byp or w = p -1. As a result, we 
obtain in the first case a linear uniformly divergent system 

2 20t  Ollt 0t  0 ¥   +Up =°  (1.3) 

and its equivalent linear homogeneous second-order equation for the function ~g. 

02~1/ 2 202._..~ = 0 (1.4) 
0U 2 p a 0P z 

In the second case we have the system 

2 20t  0lit = 0, 0t Ollt = 0 
p a O u - 0 w  ~w Ou 

(1.5) 

and the second-order equation for the function t 

O2t 2 2 O2t 
Ow 2 p a Ou 2 0 (1.6) 

The equations in systems (1.3) and (1.5) only contain two terms. In these systems and in the second- 
order equations (1.4) and (1.6) there is only one coefficient p2a2, which differs from _+ 1, which, in turn, 
depends on only one independent variable, p or w. Hence, each of the hyperbolic systems (1.3) and 
(1.5) can be considered as an analogue of the Chaplygin system of equations in the supersonic part of 
the hodograph plane [2-4, 6]. Similarly, each of the second-order hyperbolic equations (1.4) and (1.6) 
can be regarded as the analogue of second-order Chaplygin equations [2-4]. 

Systems (1.3) and (1.5) and Eqs (1.4) and (1.6) have an infinite set of exact solutions. Since systems 
(1.3) and (1.5) are equivalent, henceforth, to fix our ideas, we will confine ourselves to considering the 
following solutions of system (1.3) 

t = f ( p , u ) ,  ~ = g ( p , u )  (1.7) 

An infinite set of such solutions can be constructed by the method of separation of variables. For 
the polytropic gases considered, the coefficient 92a 2 is a power function of the independent variablep, 
which reduces the process of constructing a solution to a well-known problem [7, 8]. Moreover, one 
should note the finite number of obvious solutions, which are linear functions ofp (or w) and u, their 
products and squares and certain quadratures. Examples of such solutions will be given in Section 3. 

Note that exact solutions are also known for other forms of writing the equations of one-dimensional 
non-stationary gas dynamics [2-5, 6]. The role of the exact solutions in constructing and analysing flows 
is well known. At the same time, it turns out that the structure of Eqs (1.3) and the exact solutions of 
the form (1.7) play an important role when constructing uniformly divergent equations in the 0g, t) 
plane, as a consequence, new conservation laws in the (% t) and (x, t) planes. The following section is 
devoted to these problems. 
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2. EXACT SOLUTIONS IN THE S P E E D O G R A P H  PLANE AND 
THE C O R R E S P O N D I N G  EQUATIONS IN THE EVENTS PLANE 

We will consider the relation between the structure of system (1.3), its solutions (1.7) and new forms 
of the equations of one-dimensional non-stationary gas dynamics in the (% t) plane. In this connection, 
we first recall [9] that if an arbitrary homogeneous or non-homogeneous first-order system with 
independent variablesp and u and dependent variables t and ~ has the two-parameter solution 

a(t ,  ~ ,  p, u) = a, 13(t, g ,  p, u) = b (2.1) 

with arbitrary constants a and b, then the introduction of new dependent variables U = ~(t, ~, p, u) 
and V = ~(t, g ,p ,  u) converts the initial system into a new homogeneous system. Naturally, the presence 
in system (1.3) of an unbounded set of two-parameter solutions raises the question of using them to 
construct new homogeneous systems in the speedograph plane. Starting from this, using arbitrary 
constants a, b and c, we will convert solution (1.7) into its equivalent solution, but written in the 
form (2.1) 

c t - f ( p ,  u) = a, c g -  g(p, u) = b (2.2) 

after which we arrive at the following homogeneous system 

p2a2( c t -  f )p  + (cll t-  g)u = O, ( c t -  f )u  + ( c ¥ -  g)p = 0 (2.3) 

System (2.3) can obviously be constructed without employing the results from [9] presented above, 
since it is a direct consequence of Eqs (1.3) and of the solutions (1.7). By itself it gives no new information 
on the solutions of the equations in the speedograph plane. At the same time, as will be shown below, 
on changing to the (g, t) plane, system (2.3) is of definite interest. 

Theorem 1. For each non-degenerate solution (1.7) of system (1.3), the introduction of the dependent 
variables 

U = f ( p , u ) ,  V = g(p ,u) ,  (J = f p g u - f u g p ~ O )  

and the functions R, defined in terms of the derivatives 

R t = g(p ,u) ,  R~ = f ( p , u )  

there is a corresponding system of uniformly divergent equations of one-dimensional non-stationary 
gas dynamics in the (% t) plane 

p 2 a 2 U ¥ - V  t = O, U t -  V v = 0 (2.4) 

a second-order equation 
2 2 

p a Rv~ ¢ -R t t  = 0 (2.5) 

and a conservation law in the (x, t) plane 

( p u U -  V)x+ (pU)t = ( p u f - g ) x +  (Pf)t = 0 (2.6) 

Proof. From the fact that relations (1.7) are a solution of system (1.3), we have the equalities 

p2a2Up + V u = pZa2(Utt  p + U@llp) + Vtt  u + V@II u = 0 

U u + V p  = Utt  u + U v l l l  u + V t t  p+V~ll l l  p = 0 

Expressing the derivative of Up and ~u, using system (1.3), in terms of the derivatives of tp and tu, we 
2 2 obtain a homogeneous linear algebraic system for the quantities X = Ut - V v and Y = 9 a U v - Vt 

p2a2tpX-tuY = O, t u X - t p Y  = 0 (2.7) 
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From the condition of the theorem, the Jacobian is as follows: 

2 2 2 + t ~ #  0 J = f p g u  - f u g p  = tplltu - tu~p = - P a tp 

Consequently, system (2.7) has the unique solution X = 0, Y = 0, which also leads to Eqs (2.4) and, as 
a consequence, to the second-order equation (2.5). 

To construct conservation law (2.6), we will rewrite the second (divergent) equality of system (2.4) 
using the independent variables (x, t). We obtain 

u U x + U t - p - l V x  = 0 

Adding this equality to the obviously identity 

p - l U ( ( P U ) x  + p,) = 0 

we arrive at Eq. (2.6), which completes the proof of the theorem. 

Corollary. System (2.4) allows of the following generalization 

p 2 a 2 ( U - c t ) q - ( V - c l g ) t  = O, ( U - c t ) t - ( V - c l g ) v  = 0 

Hence c is an arbitrary constant. 
It can be seen that on changing to the speedograph plane this system is identical with system (2.3) 

considered above. 

Remarks 1. Equation (2.6) gives an unbounded set of conservation laws in the (x, t) plane. The finite number 
of conservation laws of gas dynamics in (x, y, z, t) space was constructed earlier in [10-12]. Some of these retain 
their meaning for the (x, t) plane also. It should be emphasised that on page 19 in [12], which was prepared for 
press and published later than [11], it is stated that the addition to the system of equations of gas dynamics 
investigated in [11, 12], of new relations, which do not contradict it, may extend the system of conservation laws 
constructed in [11, 12]. These relations include the potentiality condition, relations which occur when the number 
of variables is reduced, etc. Results of this paper and of the paper which preceded it [1] dearly demonstrate certain 
possible ways of realizing the assertion from [12] stated above. 

2. For individual exact solutions, the function R introduced above has a clear physical meaning, which will also 
be demonstrated by a number of examples. 

Each of systems (2.4) is in many ways identical to the system of equations of two-dimensional steady 
flows in the potential plane [3] and each of the infinite set of systems obtained using the solutions of 
Chaplygin's equations [1]. Hence, we might expect that the structure of the level lines U = const and 
V = const in the (x, t) plane also has much in common with the structure of the level lines of steady 
flows [13]. We have the following theorem. 

Theorem  2. For the velocities U c and V c of the fronts U = const and V = const, corresponding to 
the solution of system (2.4), the following relations, connecting them with the velocities of the gas u 
and the velocity of sound a and with the Jacobianj = UvVt - UtV  v of system (2.4) hold 

( U  c - u)(V c - u) = a 2 (2.8) 

p 2 U 2 ( a  2 _ ( U  c _ u ) 2 )  = a_2V2( (VC_  u)2_ a2) = J (2.9) 

In other words, the relative velocities of the fronts ( U  c - u)  and ( V  c - u)  have the same sign, their 
geometric mean velocity is equal to the velocity of sound, and the equations U c - u = V c - u = a are 
only possible whenj  = 0, and, finally, depending on the sign of the Jacobianj the following inequalities 
are satisfied 

j > 0 ,  ( U C - u ) 2 < a 2 < ( V C - u )  z 

j < 0 ,  ( U - u ) 2 < a Z < ( U C - u )  2 
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Proof. Along the line U = const we have 

Uvd~tl + Utdt = U v ( p d x - p u d t ) +  Utdt = U v p ( U  c -  u)dt  + Utdt = 0 

For  the line V -- const all the relat ions can be  wri t ten similarly. Consequent ly,  

V t Ut V ~ -  u = - ~  (2.10) U c -  u = - pU---"v' pV~ 

whence,  taking system (2.4) into account,  we also obtain  the required  equality (2.8). Further ,  the 
expression for  the J a c o b i a n j  = UvV t - UtV v using equalities (2.4) and (2.10) leads to relat ions (2.9), 
which comple tes  the proof .  

Remarks. 1. The class of flows of an incompressible fluid, covered by shallow-water theory [3, 6], enables us to 
observe visually the changes in one of the functions being investigated and the motion of the front of its constant 
values. These flows are described by the equations of one-dimensional non-stationary gas dynamics (2.4), in which 
we take 

gh  2 gh  2 z 
U = - u ,  V=--.~--,  p = . . . ~ ,  p=h ,  a = g h  

where g is the acceleration due to gravity, h = h (x, t) is the distance from the free surface to the horizontal bottom 
and % x and t are connected by the relation d~ = hdx - hudt. The change in the value of the h and the velocity 
V c of the displacement of a point on the free surface h = const can be easily observed and measured experimentally. 
Substituting the values of h and V c into Eq. (2.8), in which a 2 is replaced by gh, we obtain a relation connecting 
the velocity of the flow u and the velocity V c of motion of the front u = const. 

2. Theorem 2 is largely identical to the corresponding theorem in [13] on the structure of the level lines of plane 
steady flows, for which an infinite set of uniformly divergent equations has also been constructed [1]. In the 
supersonic case, this theorem can be formulated as follows: 

The geometric mean of the tangents of the angles formed by the level lines of the functions investigated with 
the velocity vector is equal to the tangent of the Mach angle. 

3. The inequalities presented in Theorem 2, which follow from relations (2.9), do not contradict the fact that, 
for a gas with constant parameters, a perturbation propagates with the velocity of sound. In this case, as is well 
known, the simple wave, in which the Jacobian j = 0, adjoins the constant solution, by virtue of which, at each 
point of the simple wave, including on the boundary with the constant solution, U c - u = V c - u = a. At the same 
time, at each point of the region of the solution of general form c with non-zero Jacobianj, depending on its sign, 
either I UC - a ] > a or I V~ - u I > a, i.e. one of the fronts, either U = const or V = const, may move more rapidly 
than a sound wave. 

3. E X A M P L E S  

We will consider  some examples  of  the solutions of  the fo rm t = l a n d  ~ = g of  systems (1.3) and (1.5) 
and the uniformly divergent  systems (2.4) and the second-order  equat ions (2.5) in the (% t) p lane  and 
the conservat ion laws (2.6) in the (x, t) p lane related to them, according to T h e o r e m  1. The  construct ion 
of these solutions does not  require  the use of  separa t ion  of the variables.  Nevertheless ,  these examples  
also clearly demons t ra te  the relat ion be tween  the exact solutions in the speedograph  p lane  and the first- 
and second-order  equat ions  and the conservat ion laws in the event  planes (~,  t) and (x, t). Sect ion 4 is 
devoted  to solutions, the construct ion of  which requires  the use of  separa t ion  of the variables.  I t  should 
also be  no ted  that  some of  the solutions of  this and subsequent  sections are of  independen t  interest.  

Example  1 

t 

t = f l  = - u ,  ~ = gl = P, R ( ~ , t )  = P = I p ( w , t ) d x  (3.1) 

to 

2 2  
- 9 a u v - p t  = O, - u t - - p v  = 0 (3.2) 

2 2 
p a P ' ~ v -  Pn = 0 (3.3) 
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2 
- (p  + pu ) x -  (pu) ,  = 0 (3.4) 

The integral occurring here is an integral functional. It associates with the section (to, t) of trajectory 
= const a number p, which is connected directly with the law of conservation of momentum (the 

second of Eqs (3.2) and Eq. (3.4)). In particular, the quantityP can also be written in terms of the integral 
over the Lagrange coordinate for a fixed value of the time, which can be seen from the following form 
of writing the law of conservation of momentum 

P(qt, t) - P(Vo, t) = - f u(~, t)d~ + f u(~, to)d ~ 

Vo ¥o 

Equations (3.2) and the law of conservation of momentum (3.4) are well known [2-5, 10-12]. The 
second-order equation (3.3) may be of some interest. 

Example 2 

t = f2 = w = p-l, lit = g2 = u, R(llt, t) = x (3.5) 

2 2 (3.6) p a w~g-u r = O, w t - u  v = 0 

2 2 
a x v v - x t t  = 0 ,--,(q'7"l P 

( P u f 2 - g 2 ) x + ( P f 2 ) t  = Ox+ 1, = 0 (3.8) 

As can be seen, the conservation law in the (x, t) and (g, t) planes reflects the obvious fact that, when 
moving over a closed contour, the increment of the x coordinate is equal to zero. 

Equations (3.6) are well known [2-5]. The example considered is a more interesting extremely simple 
form of the function R = x, which leads to a compact form of the second-order equation (3.7), in which 
the coefficient p2a2 is expressed in terms of the derivative x v. This equation was constructed earlier in 
[4] by another method. 

The equality of the function R to the geometrical coordinate x provides an appropriate comparison 
with similar equations for plane steady flows. This comparison is interesting in that plane flows are 
characterized by the presence of two geometrical coordinates, x andy. In this connection, we recall two 
equally justified systems of equations, constructed [1] using Ringleb's solutions [2] 

1 - M 2 ( s i n 0 )  + ( c o s 0 )  ( s i n 0 ]  _ ( c o s 0 ]  = 0 
\---~-)~ \--p-~--)~¢ = 0, k--~- jv  \ Pq J~ 

1 - M 2 ( c o s O )  (sinO~ (cosO] +(sinO~ = 0 
- ~  L, - -q ' -J¢-L,- -~J¢ = O, k'-'q--JW \ Pq ]~p 

In each of the systems, the dependent variables are the expressions in parenthesis, and in this subsection 
we will use standard notation for plane steady flows: M is the Mach number, q and 0 are the modulus 
and angle of inclination of the velocity vector, q0 is the potential and ~g is the stream function. 

Following the well-known approach [4], using the results of this paper and noting that 

cos 0 sin 0 sin 0 cos  0 
xto = ~ ,  x v = - ~ ,  y~ = , Yw = 

q Pq q Pq 

we arrive at two new and equally justified second-order equations for plane potential flows 

1 - M 2 1 - M 2 
2 'Y¢¢ + Y¢v = O, 2 XtPtP + X ~ ¥  ----- 0 

P 9 

each of which can be regarded as the inverse of the well-known second-order equation for the potential 
in the (x, y) plane [2, 4-6]. 
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Example 3 

12  k - 1  2 
t = f3  = - ~ u  - - ~ 1 ) ,  I[I = g3 = up 

t 

R(V, t) = W = [p(q, x)u(V, "c)dx 

to 

(3.9) 

2 2/'g 2 k-11)2 ) ( 2  k-11)2 ) 
- p  a ~ - ~ + - - ~  ) v - ( P U ) t  = O, - + " ~  ,It-(PU)v = 0 (3.10) 

2 2 
p a W v v - W .  = 0 (3.11) 

(3.12) 

The first relation of (3.9), dividing both its sides by t, can be written in the form of the equation of 
an ellipse in the speedograph plane (u, a)). 

The functional W has a clear physical meaning: it is the work performed by the trajectory (piston) 
with a value of the Lagrange coordinate ~ at the instant of time t (the integral which defines the function 
Wis evaluated along the trajectory ~g = const). Solution (3.9) and system (3.10) corresponding to it as 
well as the second-order equation (3.11) are fairly new, whereas the conservation law (3.12) in the (x, 
t) plane in the (% t) plane (the second of Eqs (3.10)) is the well-known law of conservation of energy 
[2-5, 10-12]. Using this case, we note that this law of conservation enables us to reduce the fairly complex 
problem of constructing the optimum motion of a piston (optimum from the point of view of achieving 
maximum work) to a one-dimensional variational problem for the closing characteristic and enables 
us to obtain the conditions of optimality in the form of finite algebraic relations [14]. 

Example 4 

2 2 
u a R = cP01/, t) (3.13) t = f 4 =  ~, ~ = g 4 -  2 k - l '  

202(u  2 a u a 2 (3.14) 

p2a2O2(p(~/, t) ~2(p(~, t) _ 0 (3.15) 
3¥ 2 3t 2 

+ u t = 0 (3.16) 

a 0(x, t) 
Here q0 is the flow potential, defined in the standard way: - -  - u. For the potential % the 

3x 
Cauchy-Lagrange integral derived below, in particular, and the second-order equation [2-4,6] 

2 2 
~)9(x, t) u a 

3t + 2" + ~ = 0 (3.17) 

2~(t~ ,, 02tp(X, t) a2)O2tO(x, t) t) ' t ) + z u  ~ +(u 2-  = 0 
Ox 2 (3.18) 

are well known. 
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Example 4 thereby demonstrates the relation between the exact solutions (3.13) not only with the 
new forms of the equations, but also with the potential % and also takes into account the fact that when 
the independent variables (x, t) are replaced by (% t) the second-order equation (3.18) becomes 
Eq. (3.15) and is considerably simplified. 

The choice of Examples 1-4 is fairly random, and is only related to the presence of the simplest 
solutions t = 3~(P, u) and ~ = gi(P, u), which is the basis of these examples. Nevertheless, these examples 
are also interesting from the procedural point of view, since they demonstrate the presence of a linear 
relation between the derivatives (fi)~ and (gi)t, and as a consequence, the divergent equations from 
Examples 1-4. 

For examples 1-3 we have 

1 u 2 

- u(gl)  v - P(g2) v + (g3)q = -uPV - puq + (pu)q = 0 

after which, we obtain a similar linear relation connecting the divergent equations from Examples 1-3: 

- u ( ( f l  ) , -  ( g l ) v ) -  P(Cf2) t -  (g2)¥)+ ( ( f 3 ) t -  (g3)q) = u(ut+ P v ) - P ( ( ~ ) t - u q ) -  

((2 P ) +(pu)~) = 0 
- + p ( k -  1--"'~ t 

(3.19) 

Consequently, according to what was said earlier in [15, 16], each of the three conservation laws 
considered is additional to the two other conservation laws 

Similar linear relations also exist for Examples 1, 2 and 4 

_~(fl)t+u(f2)t_(f4)t = ~ut+u(11 (u) (3.20) 

1 (u2p k ) =  0 -~ (gl)q+u(g2)~c-(g4)~¢ =--p pv+uuq+ 2 p ( k - 1 )  v (3.21) 

1 
- ~ ( ( f l ) t -  (gl)¥) + u ( ( f 2 ) t -  (g2)¥) - ( ( f 4 ) t -  (g4)¥) = 

1 
u, / u 0,, 1,) 3-0 (3.22) 

It is also easy to see that the system of equations (3.19) and (3.22) enable one to express the divergent 
equations from Examples i and 2 in terms of the divergent equations from Examples 3 and 4. One can 
thereby take as proved the fact that each of the divergent equations from Examples 1-4 can be written 
in the form of a linear combination of two other divergent equations from the same examples. 
Consequently, according to what was stated earlier in [15, 16], each of the conservation laws from 
Examples 1-4 is additional to the other conservation laws form these examples. 

It should be noted that this is a fairly typical situation, when a linear combination of three or more 
conservation laws, written in differential form, vanishes. Thus, in the papers mentioned above [15, 16], 
the construction of an additional conservation law is used to symmetrize the equations of gas dynamics. 
The problem of additional conservation laws was not discussed in [11, 12], but a simple analysis of the 
divergent equations derived in [11, 12] enables us to indicate several linear combinations which vanish. 
Here we must emphasise that the fact that these and other linear combinations mentioned above vanish 
can in no way be transferred to integral forms of the corresponding conservation laws. All this indicates 
that the classification of the conservation laws is fairly complex and far from complete. Note that this 
classification must take into account many factors, for example, whether the divergent equation of the 
composite part of the homogeneous system of equations of gas dynamics considered depends on the 
functions A and B from the equation At - B v = 0 or on gt, t, p and u or not, or whether it is possible 
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that they also depend on the integral functions, as, for example, P, W, x and % As indicated, a more 
detailed consideration of examples 1-4 confirms this. 

Consider examples 1 and 2. To do this we will multiply the second-order equations (3.3) and (3.7) 
by x and P respectively. Adding the results, we obtain the second-order inhomogeneous equation 

pZa2(xp)vv - (xP)t t + 2pa2u + 2up = 0 

and the corresponding non-uniformly divergent system 

2a2(P xu) P t.'9 - )V - (uP + xp) t + 2pa2u + 2up = 0 (3.23) 

= o (3.24) 

Divergent equation (3.24), which is of interest, gives a new consideration law in the (% t) plane, which 
can also be written for the (x, t) plane. 

We emphasize that the expressions in brackets in Eq. (3.24) include the integral functionals P and 
x. This fact does not complicate the use of the conservation law in integral form. It is only necessary, 
when evaluating the integral over a closed contour 

~ ( p -  xu)d~ + (uP + xp)dt 

to calculate simultaneously the quantities P and x using the integrals from (3.1) and (3.5), calculated 
over the same contour. At the same time, the use of the integral conservation laws, which follow from 
Eq. (3.24) and its similar additional conservation laws in variational problems on the optimum motion 
of a piston, for example, as an extension of the results obtained earlier [14], leads to the under- 
investigated situation when the minimized integral functional contains other integral functionals as the 
arguments. 

By analogy with Eq. (3.24), we will write out the five remaining divergent equations 

u 2 a 2 

a 2 

(V~ (u~ a 2 i ) ) _ ( u W + x p u ) v  ((xW)~,),- ((xW)t) v -  - x + k(k--------f" = 0 

a 2 

((X~p)q),-((X~p),) v - (p  +xp )  t - (u~p+ x ( 2  k - 1 ) I v  = 0  

( ( ( p W ) v ) t -  ( (gW)t)~¢ =-- W-~ - q~ -~ + k (k  - 1-'-"~ t - W ~ - + t~pu = 0 k - 1  

4. SOLUTIONS OBTAINED BY THE METHOD OF SEPARATION 
OF VARIABLES 

Using the standard method, we write ~ in the form of the product ~ = h(p)q(u), and after substituting 
this into Eq. (1.4), we have 

2 2 h " ( p )  _ q"(u)  = a = e o n s t  ( 4 . 1 )  9 a h(p) q(u) 
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The cases A > 0 and A < 0 require separate consideration. 
A negative constant of separation, A = _92 < 0. We have q" = _L2q. This leads to two independent 

solutions ql = cos)~u and q2 = sin~u. Further, the second-order equation 

p2a2h"  = kp l+l /kh  '' = Ah  

also has two independent solutions, which, whenA = _~2 we will denote by SI(p, )L) and S2(p, ~), and 
whenA = ~2 we will denote by Zl(p ,  ~) and Z2(p, ~,). Fairly lengthy expressions for Si(p, ~) and Zi(p, 9~) 
were derived previously in [7, 8]. Omitting the similar calculations, which relate to constructing a solution 
for t, we obtain, to simplify the writing, in versions 1 and 2, four collected pairs of functions, which give 
a solution of system (1.3) when A = _)~2, and related to them, according to Theorem 1, uniformly 
divergent first-order systems and second-order equations in the (~, t) plane and conservation laws in 
the (x, t) plane. For version 1 we have 

S! i • 
t = f = - ~ s l n ~ , u ,  ~ = g = Sicos~,u 

t 

* I g i (Ill , t) = Si(llt, Z)cos~,u(llt, "c)d'c, 

t o 

i = 1 , 2  

p a (R i ) ¥ ¥ -  (R i ) t t - -  P 2a2 sin~,u (Sicos~,u) t = 0 ¥ -  

( ( R i ) v ) t -  ( (Ri) t )v  -=- sin~.u - (Sicos~,u)v = 0 
t 

s; (pu sin ,u + Sicos ,U)x S, +(p sinE@ =0 

(the prime on Si and Zi denotes differentiation with respect to p). Version 2 differs from version i by 
the fact that sinXu has been replaced by -cos)~u, and cos)~u has been replaced by sin)~u, and also R+has 
been replaced by R 7. 

By analogy with Theorem 2 from [1] it is easy to show that the two additional conservation laws 
correspond to the four conservation laws derived above. This is achieved by adding the divergent 

+ and R~, where j = 3 - i, equations with subscript i from both versions, multiplied respectively by R j 
i = 1, 2. As a result we obtain the required additional conservation laws 

( (R  i )wRj + (R[)wRj)  t - + + + + ( (R~) ,Rj  + (R?) ,Rj )~ ,=  

( -S;s ln~'uRj  +s '  ) 
i . + i - + S i s i n ~ , u R j )  w 0 =- -~ cos~,uRj - ( Sicos~,uR j + = 

t 

These conservation laws have much in common with the additional conservation laws derived at the 
end of the previous section. Thus, the derived divergent equations are also a composite part of the non- 
uniformly divergent equations of one-dimensional non-stationary gas dynamics. 

A positive constant of separation, A = 92 > 0. It follows from relation (4.1) that q" = k2q, which 
leads to two independent solutions: ql = eXU and q2 = e-~U. Further, a noted above, the second-order 
equation for h(p) also has two independent solutions, for which, whenA = 92 > 0, the notation Z1 -- 
ZI(p, ~) and Z2 = Z2(p, )Q is used. Omitting the similar calculations, which relate to constructing a 
solution for t, we obtain four pairs of functions, which give the solution of system (1.3) when A = ~2 
and the corresponding non-uniformly divergent first- and second-order equations in the (~, t) plane 
and the conservation laws in the (x, t) plane. We have 

Z; ±~u Zie±kU t = f = ~ e  , ~ = g = 
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t 

R~, = i Z i ( ~ ,  x)e±~U(v")dx, i = 1, 2 

to 

2 2 ,  n + .  . - - + .  2 2 / / Z l  " + L U ' ~  ~.U 
- - (Zie  )t = 0 p a I I~ i ) ~  (1~ i ) .  = T'p a ~-~e ) v  

i 

( (R ~ )v )  t - ((RT)t)~, - ~ e (Z ie -  
t - -  ) ~  ~ 

pu-~e _zie )x+Lp--~e )t = 0 

The  upper  sign corresponds  to version 1 and the lower sign (plus or  minus)  corresponds  to version 2. 
The  two addit ional  conservat ion laws, ob ta ined  by adding the divergent  equat ions  with subscript  i 

f rom both  version, t aken  with R ] a n d  R j  + w h e r e j  = 3 - i, i = 1, 2, respectively, can also cor respond  to 
the four  conservat ion laws corresponding to the positive constant  of  separat ion.  As a result  we have 

+ -- _ + + -- -- + 

( ( R i ) qR  j + ( Ri ) q R  j ) t - ( ( R i ) tR j + ( Ri ) tR j )~c-  

Z'. Z ' i - ~ . , , n + ' ~  ~.,, - -~.u + 
- - ~ e ~ ' U R j + ~ e  t ~ j ) t - ( Z i e  R j + Z i e  R j ) w = 0  

Remarks. As pointed out, the solutions corresponding to the positive constant of separation possess an interesting 
property. Due to the fact that, in version 1, the expressions for t and g contain the same factor e , we obtain 

! 

t Zi(P, )~) m Zi(p,  ~,)' i = 1 ,2  

after which, we finally have 

p =  F ( t , ) ~ ) ,  u =  ~lnzi(p~ ' ~ ~.), i = 1,2 

In exactly the same way we have for the solution of version 2 

1 ¥ G ( t ,  3, u = i =  1,2 p = \ ~  ' - ~ l n z i ( p  ,~,), 

where F and G are certain functions to be determined. 
Hence, the solutions corresponding to the positive constant of separation possess the following properties: in 

the event plane (~t, t) these solutions are characterized by constant values of the pressure p and a logarithmic 
relationship between the velocity u and ~ along the ray t /~ = const. 

I wish to thank G. G. Chernyi, Yu. D. Shmyglevskii, S. K. Godunov  and G. V. Demidenko  for discussing 
this problem.  
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